

DF-3003

Second Year B. Sc. (Sem. III) Examination March / April - 2016

Electronics (Electronics for C.S.): Paper - III Electronics Devices & Circuit

Time: 2 Hours] [Total Marks: 50

Instructions:

નીચે દર્શાવેલ 🚁 નિશાનીવાળી વિગતો ઉત્તરવહી પર અવશ્ય લખવી.	Seat No. :
Fillup strictly the details of - signs on your answer book. Name of the Examination :	
SECOND YEAR B. Sc. (SEM. 3)	
Name of the Subject :	\ '
◆ ELECTRONICS (ELECTRONICS FOR C.S.) - 3	
- Subject Code No.: 3 0 0 3 - Section No. (1, 2,): Nil	Student's Signature

Q. 1 to 12 Multiple choice questions: (1 mark)

Q. 13 to 22 Multiple Choise Questions: (2 marks)

Q. 23 to 28 Multiple Choice Questions: (3 marks)

O.M.R. Sheet ભરવા અંગેની અગત્યની સૂચનાઓ આપેલ O.M.R. Sheetની પાછળ છાપેલ છે.

Important instructions to fillup O.M.R. Sheet are given on back side of provided O.M.R. Sheet.

1 Full form of BJT

- (A) Bi-junction transistor
- (B) Bi-polar junction transistor
- (C) Bi-junction transformer
- (D) Bi-polar junction transformer

2 Full form of JFET

- (A) Joint field effect transistor
- (B) Junction field effect transistor
- (C) Junction field effect transformer
- (D) Joint field effect transformer

3 Full form of MOSFET

- (A) Metal oxide semiconductor field effect transformer
- (B) Metal oxide semiconductor field effect transistor
- (C) Metal oxygen semiconductor field effect transistor
- (D) Metal oxygen semiconductor field effect transformer

4 Full form of CMOS

- (A) Compulsory Metal Oxide Semiconductor
- (B) Complementary Metal Oxide Semiconductor
- (C) Corrosive Metal Oxide Semiconductor
- (D) Correspondent Metal Film Oxide Semiconductor

5	GAI	N-Bandwidth product of amplifier with feedback and without	t feedback
	(A)	Equal	
	(B)	Unequal	
	(C)	Both Equal and Unequal	
	(D)	None of these	
6	Conc	dition required for oscillation	
	(A)	Barkhausen Criteria and Positive Feedback	
	(B)	Amplifier and Negative Feedback	
	(C)	Barcation Criteria and Negative Feedback	
	(D)	Negative and Positive Feedback	
7	Cros	s over distortion occurs in amplifier	
	(A)	Class-B Push-pull	
	(B)	Class-A	
	(C)	Class-C	
	(D)	Class-AB	
8	The	de load line of transistor circuit	
	(A)	has negative slope	
	(B)	is a curved line	
	(C)	does not contain Q point	
	(D)	None of these	
DF-3	003_A	A] 3	[Contd

9	The	marrianna and to and output valtons arrian is obtained when the O
9		maximum peak-to-peak output voltage swing is obtained when the Q-t of a circuit located
	(A)	Near the saturation point
	(B)	Near cut-off point
	(C)	at the center of the load line
	(D)	at least on the load line
10	For	oscillator circuit
	(A)	Input and frequency determining network is required
	(B)	No input, frequency determining network / Tank circuit is required
	(C)	Input required, feedback not required
	(D)	No input and feedback
11	CE	amplifier is characterised by
	(A)	Low Voltage Gain
	(B)	Moderate Power Gain
	(C)	Signal Phase Reversal
	(D)	Very high output resistance
12	In o	scillator the negative feedback is used for
	(A)	Increasing the output amplitude
	(B)	Decreasing the output amplitude
	(C)	Stabilizing the output amplitude
DF-3	(D) 003 _A	Decreasing the output impedance A] 4 [Contd

13	If Transistors, $\alpha_{dc} = 0.98$, the value of β_{dc}
	(A) 49
	(B) .49
	(C) .049
	(D) .0049
14	If transistors $\beta_{dc} = 100$, then value of α_{dc}
	(A) .099
	(B) .99
	(C) 9.9
	(D) 99
15	The α (dc Alpha) of a transistor equal the ratio of current to
	current, and β (dc Beta) equals the ratio of current to
	current.
	(A) Collector to emitter and collector to base
	(B) Collector to base and collector to emitter
	(C) Both of these
	(D) None of these
16	If you reduce all ac sources to zero and open all capacitor, the circuit that
	remains is called equivalent circuit. If you reduce all sources to
	zero and short all coupling and by-pass capacitors, the circuit that remains
	is the equivalent circuit.
	(A) dc, ac
	(B) ac, dc
	(C) Transient, Steady
	(D) Small signal, Large signal
17	A By-pass capacitor is similr to coupling capacitor except that it couples
	an undergrounded points to a point. A by-pass capacitor produces
	an ac
	(A) Ground, Grounded
	(B) Grounded, Ground
	(C) Supply, Ground
	(D) Grounded, Supply

18	The conversion of stress in to potential by a crystal is
	called Piezoelectric effect.
	(A) Electrical, Mechanical
	(B) Mechanical, Electric
	(C) Transcient, Longitudinal
	(D) None of these
19	Hartely Oscillator uses feedback and feedback is used in
	Colpitts Oscillator.
	(A) Capacitive, Inductive
	(B) Resistive, Capacitive
	(C) Resistive and Inductive
	(D) Inductive, Capacitive
20	A darlington pair provides a very high value ofnot provided by
	any single transistor and emitter current of one becomes current
	of the next one.
	(A) β , Collector
	(B) α , Emitter
	(C) β , Base
	(D) α , Base
21	When the collector is at AC ground is called a grounded-collector or
	amplifier, stepping-up the impedance is the main reason for using CC
	amplifier, also known as
	(A) Emitter – Follower, Common Collector
	(B) Common Base, Emitter Follower
	(C) Common Emitter, Emitter Follower
	(D) Common Collector, Emitter-Follower
22	The ac collector voltages 1900 out of fees with the ac began voltage this
22	The ac collector voltages 180° out of face with the ac base voltage this
	inversion between base and collector happens in all base driven
	amplifiers. The phase of the emitter voltage is the same as the phase of
	ac voltage.
	(A) Phase, Base
	(B) Face, Base
	(C) Base, Phase
	(D) None of these

23		nuse the gate is insulated from the channel, a MOSFET is al	
		fet the D-MOSFET can operate in either the enl	
		e or the mode. This type of MOSFET is also	known as
	norn	naly MOSFET.	
	(A)	Insulated-Gate, Enhancement, Off	
	(B)	Floating-Gate, Depletion, On	
	(C)	Insulated-Gate, Depletion, On	
	(D)	Both Floating-Gate, Depletion, On and Insulated-Gate, Dep	letion, On
24	gate	key difference between a JFET and a Bipolar transistor is biased and whereas the base is biased. The rence means the JFET is a controlled device.	
	(A)	Forward, Reverse, Current	
	(B)	Reverse, Forward, Votlage	
	(C)	Forward, Reverse, Voltage	
	(D)	Forward, Forward, Voltage	
25	effec	three part of a JFET is the source, the and the et is related to the layer around each pn junction. tive the gate voltage, the the drain current.	
	(A)	Gate, Drain, P-Type, Smaller	
	(B)	Gate, Drain n-type, Smaller	
	(C)	Gate, Drain, Depletion, Smaller	
	(D)	Gate, Drain, Depletion, Larger	
DF-3	003 _ <i>A</i>	A] 7	[Contd

26	BMV has two absolutely states. It can remain in any one of its
	state It's a Oscillator.
	(A) Unstable, Indefintely, Triggered
	(B) Stable, Indefinitely, Untriggered
	(C) Stable, Indefinitely, Triggered
	(D) Stable, definitely, Triggered
27	In JFET the change in drain current of 0.2 mA and corresponding change of 0.001 V, then \boldsymbol{g}_{m} is,
	(A) $0.0002 \mu S$
	(B) $2000 \mu S$
	(C) $200 \mu S$
	(D) $20 \mu S$
28	An electronic oscillator is a circuit which converts dc energy into energy and Oscillator in an with feedback.
	(A) AC, amplifier, positive
	(B) AC, amplifier, negative
	(C) Electrical, amplifier, negative
	(D) Electrical, amplifier, positive

8

DF-3003_A]

[108÷4]